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INTERPRETING THE LITERATURE IN
OBSTETRICS AND GYNECOLOGY: I.
KEY CONCEPTS IN EPIDEMIOLOGY
AND BIOSTATISTICS

Herbert B. Peterson, MD, and
David G. Kleinbaum, PhD

The proper interpretation of research findings in obstetrics
and gynecology increasingly requires some understanding
of epidemiology and biostatistics. The disciplines of epi-
demiology and biostatistics are inexiricably related; the goal
of epidemiology is accurate measurement of the relationship
between an exposure and a disease, and statistical methods
are required for achieving that objective. Most epidemio-
logic studies in the obstetrics and gynecology literature can
be classified as 1) cross-sectional, 2) case-control, or 3) cohort
(follow-up) studies. The 2 X 2 table represents the basic
analytic format for all three types of epidemiologic studies.
Information from this table can be used to estimate both the
magnitude of the exposure-disease relationship and the
relative likelihood that chance explains study findings.
Accurate measurement of the relationship between an expo-
sure and a disease can be impeded by two major sources of
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error: bias and chance. In broad terms, biases can be
classified as those related to 1) selection, 2) information, and
3) the presence of extraneous variables. Because biases jp
epidemiologic studies distort measurements, they must be
identified, characterized, and, if possible, avoided. Whep
biases cannot be avoided, knowledge of their likely impact
on study findings must be assessed. The role of chance is
evaluated by statistical testing of the null hypothesis, ie, the
hypothesis that two factors are not associated. Statistical
significance is only one consideration in the evaluation of
study findings; to determine whether an observed associa-
tion is likely to be important clinically, the critical reader
needs to go beyond chance (P values) to consider other
important criteria, including strength of the association,
consistency of the study findings with known information,
and biologic plausibility of the observed association.
(Obstet Gynecol 78:710, 1991)

Scientific publications and presentations provide infor-
mation regarding new developments in obstetrics and
gynecology, but proper interpretation of this informa-
tion increasingly requires some understanding of epi-
demiology and biostatistics. In this overview, we dis-
cuss principles that should help the clinician to
interpret the literature in obstetrics and gynecologyv.

Epidemiology

Many definitions of epidemiology have been offered; a
useful one is “the study of disease and health in
human populations.”' The objective of an epidemio-
logic study is to measure the relationship between an
exposure of interest (eg, ingestion of a drug) and an
outcome of intcrest (eg, occurrence of a disease).

Epidemiologists agree that causation cannot be
proven from a single study; it can only be inferred from
the aggregate results of several studies. Nevertheless,
certain types of research designs provide a stronger
basis for causal inference than others. For example,
experiments are considered “‘stronger’’ than nonexpert-
imental analytic studies because the exposure of inter-
est can be manipulated; the exposure’s impact on the
outcome can thus be directly estimated. Randomized
clinical trials, in which the participants undergo vari-
ous treatment regimens for a particular disease, are the
major examples of experimental epidemiologic studies
in our literature. Experimental studies in humans are
generally difficult to conduct, however, and are some-
times ethically unacceptable. Therefore, most of the
epidemiologic studies in our literature are nonexperi-
mental, ie, observational. In observational studies, the
exposures of interest are observed rather than manip-
ulated or randomized.
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Figure 1. A 2 X 2 table that Irepresents the basic analytic format for
observational studies. a, b, ¢, d = the numbers of people in each of
four possible combinations of exposure and disease status.

Observational Study Designs

Most of the observational epidemiologic studies in the
obstetrics and gynecology literature can be classified as
either 1) cross-sectional, 2) case-control, or 3) cohort
(follow-up) studies. The distinguishing features of
these studies are generally easily recognized and often
quile important. One:useful way to appreciate the
similarities and differences among the three types is to
consider the simple case of one exposure variable and
one outcome variable: The relationship between an
exposure and a disease can be determined from infor-
mation contained in a 2 X 2 table (Figure 1). The four
letters (a, b, ¢, and d) represent respective counts of
study subjects falling; in one of the four possible
exposure-disease combinations. For example, the “a”
combination includes those subjects who were both
exposed and diseased) whereas the “d” combination
includes those subjects who were neither exposed nor
diseased.

The 2 X 2 table represents the basic analytic format
for all three types of analytic epidemiologic studies.
Although a detailed description of these three types of
studies is beyond the:scope of this presentation, we
can discuss some simple but important features of
each.

Cross-sectional studies evaluate populations of indi-
viduals, some of whom may have the disease (out-
come) of interest and some of whom do not. This type
of study can be thought of as a snapshot of a group of
people characterizing them by whether they do or do
not have the disease of interest at one particular
moment and by whether they are or are not exposed to
the factor of interest at that moment. Individuals who
have the disease at that moment are considered “prev-
alent” cases. The différence between prevalent cases
and “incident” cases: is important in this context.
Incident cases are new cases of disease occurring over
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a specific period of time. Use of incident cases, as
compared with prevalent cases, generally permits
stronger conclusions regarding the likelihood that an
exposure is causally related to a disease. Thus, cross-
sectional studies, which by design use prevalent cases,
may not permit strong arguments for causation. For
example, a cross-sectional study to evaluate the rela-
tionship between condom use and human immunode-
ficiency virus (HIV) transmission would characterize
persons by whether they had HIV infection at a par-
ticular time and by whether they used condoms at that
time. Unfortunately, because the cross-sectional de-
sign uscs prevalent cases only, the temporal associa-
tion between condom use and acquisition of HIV
infection cannot be determined in this study. Thus,
individuals who had consistently and correctly used
condoms may have done so after having become
infected with HIV, and individuals who had correctly
used condoms at some time in the past may have
stopped using them for a brief period, become in-
fected, and subsequently resumed correct use. Because
a cross-sectional study cannot assess the temporal
relationship between condom use and HIV infection, it
provides limited and potentially misleading informa-
tion regarding the etiologic relationship between con-
dom use and HIV transmission.

Case-control and cohort studies differ from cross-
sectional studies in that they both can include the
experience of incident cases. Case-control studies can
include either prevalent or incident cases. Cohort stud-
ies, by design, allow only incident cases. The major
difference between case-control studies and cohort
studies is that case-control studies classify study sub-
jects on the basis of whether they are diseased and
then determine whether they were previously exposed
to the factor of interest. Cohort studies, on the other
hand, classify study subjects on the basis of exposure
status and then follow them to determine whether
they develop disease. In the example of condom use
and HIV transmission, a case-control study would
identify participants as either prevalent or incident
cases of HIV infection and then determine whether the
participants had or had not used condoms recently or
in the past. By contrast, a cohort study would identify
participants by whether they used condoms and then
follow the subjects over time to determine whether
they develop HIV infection. Certainty about an indi-
vidual's HIV infection status would be contingent
upon identifying individuals known to be uninfected
(seronegative) at one point in time and known to have
become infected (seroconverted) at a subsequent time.

Case-control studies are retrospective: Study sub-
jects are first identified as being diseased or not dis-
eased; the investigator then determines whether the
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study subject was exposed sometime in the past.
Cohort studies, by contrast, typically involve identify-
ing a population of disease-free individuals who are
either exposed or not exposed and then following
them prospectively to see whether they develop dis-
ease. Thus, cohort studies are:often called prospective
studies. Because retrospective cohort studies are also
possible, however, many epidemiologists use the term
“follow-up” or “longitudinal” ‘when referring to those
cohort studies that follow individuals over time to
determine whether they develop disease. For the rest
of this overview, such cohort studies will be referred to
as follow-up studies.

Case-control studies have several advantages over
follow-up studies. First, they can be completed in less
time than follow-up studies, particularly when the
disease of interest has a long induction period. Fol-
low-up studies require that subjects be followed for at
least as long after exposure as during the known or
suspected induction period, which for some diseases
(such as cancer and cardiovascular discase) may be
10-20 years or more after exposure. Such long-term
studies are difficult to conduct and generally quite
expensive. Further, a large number of study subjects
may be lost to follow-up during that period, making
the interpretation of study results difficult or impossi-
ble. Thus, case-control studiesiare typically more effi-
cient and less costly than follow-up studies. This is
particularly true when the disease being studied is
uncommon. For example, hepatocellular adenoma oc-
curs in fewer than four of every 100,000 oral contra-
ceptive (OC) users. A follow-up study to assess the
relationship between OC use and hepatocellular ade-
noma would therefore have to:follow at least 100,000
OC users for years before even'a few cases of hepato-
celtular adenoma would be expected. If such a study
followed substantially fewer than 100,000 OC users
and identified no cases of hepatocellular adenoma, the
negative finding would be uninterpretable. It would be
much more efficient to a identify a group of women
with this rare condition and a control group of disease-
free women and then determine whether the members
of either group had previously used OCs.

Despite these advantages, case-control studies are
sometimes considered methodologically inferior to fol-
low-up studies. In follow-up studies, data are collected
forward, from exposure toward effect. By contrast, in
case-control studies, data are collected backward, from
effect toward exposure. Nevertheless, a “‘perfectly”
done case-control study should|provide as accurate a
characterization of what is being measured as a ““per-
fectly”” done follow-up study. As a practical matter,
however, no epidemiologic study is ever perfect—all
studies have at Jeast some methodologic limitations.
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These limitations are inherently greater in case-contro]
studies. In particular, accurate documentation of expo-
sure history can be very difficult. Often, limitations of
case-control studies are related to difficulties in select-
ing proper controls. Persons in the control group of a
case-control study should meet strict criteria, including
the following: being at risk of developing the disease
under study, being as comparable to cases as possible
(except for having the disease), and not having other
conditions related to the likelithood of having the
exposure of interest. Despite biases often inherent in
the measurement of past exposure and the selection of
study controls, a well-designed and well-conducted
case-control study may have substantially fewer meth-
odologic limitations than a poorly designed and poorly
conducted follow-up study.

Precision Versus Validity

Accurate measurement of the relationship between an
exposure and a disease can be impeded by two major
sources of error: random error and systematic error.
Precision corresponds to random error and validity to
systematic error. Specifically, precision refers to the
extent to which random error or chance affects the
results of one’s study. The more precise a study, the
less likely its findings are attributable to chance. An
epidemiologic investigation is conducted on samples
of people, the inclusion of whom is determined by
chance; therefore, the results of analysis in two or
more samples may differ, purely by chance. In general,
the larger the study population (study size), the
greater the precision.

In contrast to precision, validity concerns whether
there is a systematic error, in either the research design
or the analysis, that leads to a wrong conclusion. In
particular, the data resuiting from a poor study design
may suggest a strong association between the study
exposure and the disease when, in fact, there is no
association at all. Conversely, the data may indicate no
association when, in reality, a strong association exists.
A distortion that may result when estimating the
association of interest is usually called a bias. Bias has
been defined as “any effect of any stage of investiga-
tion or inference tending to produce results that depart
systematically from the true values.””? Bias can result
from the way subjects are selected into the study, from
incorrect information gathered on study subjects, and
from failure to adjust for variables (other than the
exposure) that may influence the likelihood of becom-
ing diseased.

Validity can be clarified (and contrasted with preci-
sion) by using the marksman’s target as a metaphor.
Precision can be thought of as the proximity of a shot,
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which represents the observed study sample, to the
pull's-eye of the target being fired at, ie, how close to
hitting the target the investigator comes. Validity, by
contrast, deals with whether the shot is being fired at
the right target. When a study is invalid, it is shooting
at the wrong target and consequently is not measuring
what it is supposed to measure. In further distinguish-
ing between validity and precision, note that it is
possible to get a very precise estimate that gives a
biased or wrong conclusion (the shots are closely
grouped but missing the correct target). Generally,
when doing epidemiology studies, it is important not
to sacrifice validity for the sake of precision; the goal is
to get the right (unbiased) answer, rather than get a
precise answer that is nevertheless misleading.

Biases

Because biases in epidemioldgic studies distort mea-
surements and may lead to a wrong answer, they must
be identified, characterized, and, if possible, avoided.
When biases cannot be avoided, knowledge of their
likely impact on the distortion of results will greatly aid
in the interpretation of study findings. If biases are not
so characterized, the study results may be uninterpret-
able. In broad terms, the numerous potential study
biases can be classified as those related to 1) selection,
2) information, and 3) the! presence of extraneous
variables.

Selection bias is a measurement error attributable to
the procedure for selecting study participants. It re-
sults in measures of effect different from those that
would be obtained if the entire target population were
studied. There are many types of selection bias. One
type is due to self-selection: Study participants who
volunteer for an investigation may be more or less
likely to have the exposure:of interest; for example,
women who took a suspected teratogen and whose
infants had a birth defect may be more likely than
other women to volunteer for a study of birth defects.
A second type of selection bias concerns follow-up of
study participants. If subjects exposed to the factor of
interest were more likely to be followed than were
nonexposed persons, such unequal follow-up might
bias the study toward a positive association between
exposure and disease, particularly if those followed
were more likely to get the disease than those not
followed. Selection bias can also occur in the selection
of study controls. Comparison groups should be as
similar as possible to the case or exposed group. And
as noted earlier, in a case-control study, the control
group should be at risk for having the disease under
study and should not have: conditions related to the
exposure of interest.
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Information bias, or misclassification bias, results
from systematic errors in the collection of information
about either the exposure or the disease being evalu-
ated in the study. If the error for either the exposure or
the disease is independent of the other factor, the error
is termed nondifferential misclassification. If the error
for the exposure is not independent of the disease or
vice versa, the error is termed differential misclassifi-
cation. One example of differential misclassification is
recall bias, which can result from selective recall of
study subjects. Persons with the disease of interest
may be more likely than those without the disease to
recall exposures that they consider related to their
disease. Women whose children had birth defects may
be more likely than are women whose children did not
have birth defects to recall a variety of exposures,
including ingestion of a teratogen. Nondifferential er-
ror results in bias toward an underestimation of any
real effect. In contrast, differential misclassification can
lead to a bias that either overestimates or underes-
timates the true effect.

Measurement of the exposure-disease relationship
can be further complicated by extraneous factors called
covariates. To understand how covariates may intro-
duce measurement errors, it is important to under-
stand the terms “interaction’” and “confounding.”

Interaction and Confounding

[nteraction occurs when the relationship between the
exposure and the disease being measured varies ac-
cording to the level (ie, value) of one or more covari-
ates.” When such variation occurs, the covariate is
considered an effect modifier. As an example, the
relationship between OC use and cardiovascular dis-
case varies depending on whether a woman smokes.
Oral contraceptive users who smoke are at greater
relative risk of myocardial infarction than those who
do not smoke. Because the relative risk differs for
smokers and non-smokers, interaction of the exposure
(OC use) with smoking is said to be present. When
significant interaction occurs, as determined by statis-
tical testing, relative risk estimates (to be discussed
later) should be presented separately for those with
and those without the modifying covariate (effect mod-
ifier), in this case, smoking. The importance of sepa-
rate relative risk estimates is obvious in the stated
example; the separate risks identified have implica-
tions for both clinical decision-making and counseling.

Confounding, in simple terms, is the mixing of
effects.® It results in an inaccurate measure of the effect
of an exposure if the extrancous factor, or confounder,
is not taken into account in the analysis. To be a
confounder, the extraneous factor must be associated
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with both the likelihood of being exposed and the
likelihood of developing the disease. When confound-
ing is present, an estimate of the relationship between
the exposure and the disease that does not account for
a suspected confounder will be meaningfully different
from an estimate that adjusts for the suspected con-
founder using special analytic techniques. For exam-
ple, if we found a strong relationship between OC use
and myocardial infarction when smoking was ignored
in the analysis and a weak or absent relationship when
smoking was considered, we would conclude that
smoking is a confounder. Unlike interaction, which, as
noted, is assessed by statistical testing, confounding is
evaluated without statistical testing. Adjusting or con-
trolling for confounding is discussed in more detail in
Part II of this report.

Biostatistics

Our distinction between epidemiology and biostatis-
tics is arbitrary; actually the two disciplines are inextri-
cably related. Indeed, some important principles of
biostatistics have already been introduced here. Statis-
tical methods are required for reaching epidemiology’s
goal of accurate measurement of an exposure-disease
relationship.

Testing Hypotheses

Epidemiology tests hypotheses. By convention, statis-
tical methods test the null hypothesis, ie, the hypoth-
esis that two factors are not associated. If study find-
ings indicate that the hypothesis of no association can
be rejected, then the alternative hypothesis that some
association exists is accepted. The association may be
large or small, biologically meaningful or not. The
decision to reject or not reject the null hypothesis is
usually based on the P value. The P value indicates the
relative likelihood that the observed exposure-disease
relationship is due to chance. Typically, P < .05 is used
to determine rejection of the null hypothesis. Such
rejection means that the observed association between
two factors is unlikely (less than 5% likelihood) to be
due to chance. In other words, there is less than a 5%
chance that the decision to reject the null hypothesis is
in error. When the null hypothesis is rejected using P
< .05, we say that the observed association is statisti-
cally significant at the 5% level.

Errors known as type I and type II can occur when
the null hypothesis is tested. A type I error occurs
when the null hypothesis is true but is incorrectly
rejected, ie, concluding incorrectly that two factors are
associated. The likelihood of a type [ error is fixed
when the significance level is chosen. For example, if
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the significance level of .05 is chosen, then 5% of the
time the null hypothesis will be rejected when y
should not be. The significance level and the P valye
are not the same. The significance level is chosen by
the investigator, ideally without looking at the data,
and is the probability of making a type I error that the
investigator is willing to allow. The P value, by con.
trast, is a so-called posterior probability value based on
the data; it represents the likelihood of observed dif-
ferences under the null hypothesis. This likelihoud (ie,
the P value), because it is based solely on the observed
data, may be either higher or lower than what the
investigator is willing to allow based on a predeter-
mined significance level.

A type 1l error occurs if the null hypothesis is not
rejected when it should be, ie, concluding incorrectly
that two factors are not associated. To understand this
type of error, one needs to understand the concept of
study power. In simple terms, a study’s power is its
ability to significantly detect an association if it really
exists. This ability is contingent on study size: In
general, the larger the study population, the greater
the study power. A type II error can occur when a
study is too small to detect an association that really
exists. For example, suppose maternal exposurc o a
drug causes birth defects in 1.0% of infants. In one
study, the rate of anomalies among the infants of 50
women exposed to the drug is compared with that
among infants of 50 women not exposed. No anoma-
lies were reported (and given the known 1% rate at
which the drug causes birth defects, none should have
been expected). The conclusion that maternal exposure
to the drug is not associated with birth defects might
be a type Il error because the sample size of 50 in each
group may have been too small to detect a real effect.
Thus, when results indicate no association between
factors being evaluated, we should determine whether
the study is large enough to have had the potential to
detect the association.

The P value expresses the relative likelihood that
chance explains study findings. Chance, however, is
only one factor to consider when determining whether
an observation is likely the result of cause and effect.
To try to determine causation, epidemiologists also
assess the strength of an observed association. Both
case-control and follow-up studies measure the mag-
nitude of association between the exposure and the
disease of interest. In follow-up studies, the strength
of the association can be estimated by using the rela-
tive risk. In case-control studies, the odds ratio is
typically used. With rare diseases, the odds ratio from
a case-control study with proper controls closely ap-
proximates the relative risk from a follow-up study.
The numerical value obtained for either a relative risk
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or an odds ratio can be interpreted in the same way. In
essence, each measure compares the risk for exposed
persons with the risk for unexposed persons. For
example, a relative risk or odds ratio of 1 means that
the risk for exposed persons is the same as that for
unexposed persons, ie, there is no association between
exposure and disease. When the relative risk or odds
ratio is greater than 1, the risk (or ratio of the relative
odds) is greater for exposed persons than for unex-
posed persons. In this situation, we say that the
direction of the association is positive. For example, if
the estimate is 10, the risk for exposed persons is ten
times greater than for unexposed persons. If the rela-
tive risk or odds ratio is less than 1, the risk is lower for
exposed persons than for unexposed persons. In this
situation, we say that the direction of the association is
negative. For example, if the estimate is 0.1, the risk for
exposed persons is one-tenth that for unexposed per-
SONS.

Calculation of both the relative risk and the odds
ratio requires the information from the classic 2 X 2
table. As already noted, the table (Figure 1) is based on
information, obtained in an observational study, re-
garding those exposed and those unexposed to the
factor of interest and those known to be diseased and
those not diseased. With this information, the esti-
mated relative risk (Figure 2) and the estimated odds
ratio (Figure 3) can be calculated.

Exposed

Yes No
(Tt T [“_ "~ -

Yes l a b

l

D d | | !
| | i
No | c | d |
I |
O

N, No

Relative risk = risk for the exposed
“risk for the unexposed

= afNy

b/Ng

= axANA_Q_
b x N1

Figure 2, Calculation of the relative risk using the 2 x 2 table. a, b,
¢ d = the numbers of people in each of four possible combinations of
€Xposure and disease; N, = total number exposed; N, = total number
urexposed.
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Exposed

Yes No
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d .
° T
No c d l|

Odds ratic = exposure odds among cases (diseased)

exposure odds among controls (not diseased)

= _au“ = a
atc €
b B
b+d d
= ad
be

Figure 3. Calculation of the odds ratio using the 2 x 2 table.
Abbreviations as in Figure 1.

Confidence Intervals

The observed odds ratio and relative risk are reported
as “point estimates.” A confidence interval for this
estimate indicates the variability of the point estimate.
The wider the confidence interval, the larger is the
variability of the point estimate and the less likely that
the point estimate is accurate. The 95% confidence
interval is often used. Technically, this means that if
the study were to be repeated over and over again and
a 95% confidence interval were calculated each time,
95% of these confidence intervals would be expected to
contain the true exposure-disease parameter being
estimated. Note that it would be incorrect to character-
ize the confidence interval as giving a range of values
for the ““true’” exposure-disease value; the true value is
a single number that does not vary.

The confidence interval for the point estimate can
also be used to determine statistical significance for a
two-tailed significance test, in which the investigator
allows for the possibility that the exposure either
increases or decreases the risk of the disease. Gener-
ally, if « is a (preset) significance level, then the null
hypothesis is rejected if the 100 (1 — «)% confidence
interval does not overlap the null value being tested.
For example, if the measurement is a relative risk, the
null value is relative risk = 1. Then, if a 95% confidence
interval for the relative risk does not overlap 1.0, the
null hypothesis of no exposure-disease association is
rejected at the .05 significance level. The confidence
interval can therefore be used instead of the P value to
test the likelthood that study results are due to chance.
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Table 1. Suggested Readings

Greenberg RS, Kleinbaum DG. Mathematical modeling strategies for the analysis of epidemiologic research. Ann Rev Public Health 1985;6:\

223-45,

Hill AB. The environment and disease: Association or causation? Proc R Soc Med 1965;58:295-300.
Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic research: Principles and quantitative methods. New York: Van Nostrand

Reinhold, 1982.

Kleinbaum DG, Kupper LL, Muller KE. Applied regression analysis and other multivariable methods. Boston: PWS-Kent, 1988.
Last JM. A dictionary of epidemiology. New York: Oxford University Press, 1983

Rothman KJ. Modern epidemiology. Boston: Little, Brown, 1986.

Schlesselmar: J]. Case-control studies: Design, conduct, analysis. New York: Oxford University Press, 1982.

For example, if the 95% confidence interval is 2.1-9.5,
this does not overlap 1.0, so that the null hypothesis is
rejected at the 5% significance level; this is the same
conclusion we would reach if P < .05. However, if the
95% confidence interval is 0.5-9.5, this overlaps 1.0, so
that the null hypothesis is not rejected, which is the
same conclusion we would reach if P > .05.

Mathematical Modeling

The analysis of epidemiologic data typically requires
the use of complex statistical procedures involving
mathematical modeling. The most commonly used
mathematical model in the literature on obstetrics and
gynecology is logistic regression. In Part 1I of this
report, we describe how logistic regression can control
for multiple confounders.

Interpreting the Literature

How can this brief discussion help the practicing
clinician better interpret the literature? Each point
discussed here relates to questions the critical reader
must ask. Here are a few examples:

1) What exposure-disease relationship is being stud-
ied or what hypothesis is being tested? The most
important question the critical reviewer should initially
ask is, “What is being measured?”

2) Is the study population appropriate for testing the
hypothesis?

3) Is the study methodology appropriate for testing
the hypothesis? What type of study was conducted,
and what are its major methodologic limitations?

4) What factors other than the exposure and disease
under study need to be considered? What study biases
may apply? Have they been adequately identified and
controlled? If not, how should the results be inter-
preted?

5) If no association was found, was the study power
adequate to detect an existing important association?

By asking these questions, the reader can determine
whether observed associations are likely due to
chance, selection or information bias, confounding
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(some epidemiologists consider that confounding is a
bias as well), or cause and effect. When associations
are based on studies that have serious methodologic
limitations, results are difficult or impossible to inter-
pret.

For clinicians, the primary question is whether ob-
served associations are important clinically. P values
tell us whether an observed association is likely due to
chance, but they often tell us nothing about clinical
relevance. Clinical relevance is probably contingent
upon whether an observed association is causal and, if
causal, upon the direction and magnitude of the ob-
served relationship expressed by odds ratio and rela-
tive risk estimates. Although epidemiologic studies
cannot, strictly speaking, prove causation, they can be
used to infer causation when properly conducted and
interpreted. To determine the likelihood of causation,
the critical reader must go beyond chance (P values) to
consider other criteria, including the following™:

1) Strength of the observed association. In general,
the stronger the association, the more likely it is to be
real.

2) Consistency of the study findings with those of
other reports and all known information about the
exposure and the outcome investigated.

3) Temporality of the observed association. Does the
cause precede the effect?

4) Biologic plausibility of the observed association.
Does the relationship make sense?

5) Biologic gradient in the observed association. Is
there a dose-response relationship?

6) Coherence with what is known regarding the
natural history and biology of the outcome under
study.

7) Experimental evidence to support or refute the
observed association.

8) Analogy. Is the observed association supported by
similar associations?

Although this list of criteria is incomplete and cannot
always be used to establish probable cause, these and
other factors must be considered to determine whether
statistically significant findings are clinically significant
as well.
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A basic understanding of epidemiology and biosta-
tistics is essential for proper interpretation of the
literature in obstetrics and gynecology. The principles
discussed here, supplemented by appropriate texts
(Table 1), should equip the clinician with most of the
tools necessary for the job. A dictionary of epidemio-
logic terms is available (Table 1) and may serve as a
useful reference. Like other tasks, reviewing the liter-
ature gets easier with practice. Despite appearances,
one does not need to be an epidemiologist to properly
interpret most analytic epidemiologic studies; how-
ever, consultation with an epidemiologist may be use-
ful, particularly to address concerns beyond the scope
of this discussion.

References

1. Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic re-
search: Principles and quantitative methods. New York: Van
Nostrand Reinhold, 1982.

2. Last JM. A dictionary of epidemiology. New York: Oxford Uni-
versity Press, 1983.

INTERPRETING THE LITERATURE IN
OBSTETRICS AND GYNECOLOGY: II.
LOGISTIC REGRESSION AND
RELATED ISSUES

Herbert B. Peterson, MD, and
David G. Kleinbaum, PhD

The goal of epidemiology is accurate measure of the rela-
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riates. Although stratification is the best initial approach for
controlling covariates, it is often impractical, particularly if
more than one or two covariates must be controlled. Multi-
variate mathematical models are required if multiple cova-
riates are to be controlled. Logistic regression is the mathe-
matical modeling procedure most often used to analyze
studies in obstetrics and gynecology. Although there are no
uniform rules for building a proper model for regression
analysis, useful general strategies are available. It must be
emphasized that, though the use of mathematical modeling
can control for multiple covariates and thereby improve the
chance of obtaining an accurate measure of the exposure-
disease relationship, it cannot ““fix"" data that result from a
poorly designed or improperly conducted study. (Obstet
Gynecol 78:717, 1991)

In Part 1 of this report, we highlighted important
principles of epidemiology and biostatistics relevant to
interpreting the literature in obstetrics and gynecol-
ogy. These principles included the control of covariates
of the exposure-disease relationship. Two types of
covariates were distinguished: confounders and effect
modifiers; both are extraneous to the exposure-disease
relationship and must be considered to obtain a valid
measure of that relationship. In Part II, we discuss the
various strategies investigators use to control for the
effects of covariates in both the design and the analysis
of a study. In particular, we discuss how several
covariates can be controlled simultaneously by using a
mathematical modeling procedure called logistic re-
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gression, which is used increasingly to analyze studies
in obstetrics and gynecology. Although a complete
discussion of logistic regression usually requires a
semester or more in graduate school, we highlight the
subject here with a minimum of mathematics and
jargon.

Dealing With Covariates Through Study
Design

Before designing a study, an investigator should iden-
tify potential covariates associated with the exposure-
disease relationship under investigation by reviewing
the relevant literature. Once such covariates are iden-
tified, the investigator can design the study to measure
and control for their impact.

Design strategies for dealing with covariates include
randomization, restriction, and matching. Except for
randomization, which can only be used for experimen-
tal studies, these techniques can be applied to both
experimental and nonexperimental investigations.

To visualize randomization, suppose that the rela-
tionship between oral contraceptive (OC) use and
myocardial infarction is to be measured and that smok-
ing is considered to be a covariate {see Part I). In an
experimental study of this relationship, the investiga-
tors could randomize the study participants by
whether they did or did not use OCs. (This is one
example of what we noted in Part I, that experiments
in humans are often impractical and sometimes uneth-
ical.) If randomization is effective, we would expect the
distribution of smokers and non-smokers to be approx-
imately equal between OC users and non-users. The
goal of randomization is to create groups of people
who are equally likely to develop disease (myocardial
infarction) in the absence of the exposure of interest

(OC use). If this goal is achieved, potential covariates -

such as smoking will be distributed equally among the
groups and will therefore have no effect on the expo-
sure-disease relationship; the effect of smoking on the
relationship will be controlled for.

Restriction ensures that potential confounders do
not differ between study groups. For example, in a
study of the relationship between OC use and myocar-
dial infarction, any potential confounding effect of
smoking could be controlled by eliminating smokers
from the study population. However, if the study were
restricted to non-smokers, the conclusions would not
be generalizable because they may not apply to smok-
ers.

The objective of matching is to ensure that covariates
are equally distributed among study groups so that the
groups are comparable with respect to the matching
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variable. For example, if the investigator matches op
smoking, then smoking status is distributed the same
among women who used OCs as among women whq
did not.

If successful, randomization, restriction, and match-
ing will eliminate the impact of the covariate on the
exposure-disease relationship. However, if the covari-
ate is a potential risk factor of interest, it would be
unwise to deal with it by one of these techniques. For
example, if one wanted to determine whether the
impact of OC use on the risk of myocardial infarction
varied by smoking status (ie, whether smoking was an
effect modifier), then restricting the study to non-
smokers would preclude the ability to study the mod-
ifying effect of smoking. Therefore, study design strat-
egies are used to eliminate the impact of covariates one
is not interested in, so that one can evaluate an
undistorted measure of the exposure-disease relation-
ship in which one is interested.

Dealing With Covariates Through Study
Analysis

If the impact of a covariate is not eliminated by study
design, it must be addressed during study analysis.
There are two approaches to the control of covariates
during analysis: stratification and mathematical mod-
eling.! In stratified analysis, study groups are catego-
rized by relevant covariates. The association between
the exposure and the disease is then evaluated for each
category. For example, the risk of myocardial infarc-
tion for OC users could be calculated and reported
separately for smokers and for non-smokers. Stratifi-
cation can thereby provide a simple and useful way to
identify the impact of covariates on the exposure-
disease relationship. In fact, stratification is the best
initial approach to controlling covariates during analy-
sis. However, stratification is often impractical, partic-
ularly if more than one or two covariates must be
controlled. Even large studies may have too few per-
sons in each stratum to analyze. In such instances,
when one ““runs out of numbers,” there is a resultant
lack of both precision and reliability. For example,
even if a study of OC use and myocardial infarction is
large enough to stratify by smoking, it might be too
small to stratify by age as well. In our example, the
ability to stratify by multiple factors is important be-
cause the risk of cardiovascular disease associated with
smoking and OC use appears to be modified by age.
Multivariable mathematical models are needed if sev-
eral covariates are to be controlled.

When selecting a mathematical model, the objective
is to choose one whose properties and assumptions fit
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the study data as closely as possible. Because of its two
main properties, the logistic model is often chosen to
describe epidemiologic data. First, the logistic model
provides estimates of risk for which values are re-
stricted to a range between 0-1. “Risk” means proba-
pility, which always ranges between 0 (eg, no cardio-
vascular disease) and 1 (eg, cardiovascular disease).
Therefore, when the logistic model is used, the result-
ing risk estimates describe probabilities. For other
models, risk estimates above 1 or below 0 can occur.
Second, the mathematical form of the logistic model is
S-shaped. The biologic relationship between risk fac-
tors and the development of disease is often well
described by an S-shaped curve. '

We can illustrate the logistic model by using data
from a completed analysis of the relationship between
OC use and ovarian cancer,” in which both age and
parity were covariates (in this case, they were con-
founders). Oral contraceptive use and the confound-
ers, age and parity, are the independent variables we
want to use to predict the disease, ovarian cancer. The
investigator enters data obtained on the independent
variables and on the disease into a computer by using
an appropriate computer program for logistic regres-
sion. The program will then estimate a logistic model
based on the data and provide relevant results on the
computer printout.

For our example on OC use and ovarian cancer, the
computer printout includes the following information:

Variable Coefficient
Intercept —1.1818
OC use (B) —0.5336
Age —0.0843
Parity —0.7440

This type of information can be used to estimate an
odds ratio, test for its statistical significance, and
obtain confidence intervals around it. The latter con-
cepts were introduced in Part 1. Their application to
logistic regression can be illustrated most simply if the
logistic model contains the following: 1) a single 0/1
exposure variable (ie, one for which an individual is
either not exposed [0] or exposed [1]), and 2) several
potential confounders to the exposure-disease relation-
ship, but no interaction terms (defined below). Given
these two conditions, the formula for the estimated
odds ratio (OR) is simply OR = ef, where B is the
estimated coefficient of the exposure variable calcu-
lated by the computer program.

In our example on the risk of ovarian cancer among
OC users, the odds ratio adjusted for the confounders
age and parity is estimated by e® or e7%%%¢ = 0.6, In
other words, the logistic regression results tell us that,
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after we control for the effects of age and parity, OC
users have a lower risk of developing ovarian cancer
than women who do not use OCs. One might wonder
why the coefficient B (the 8 estimate for OC use) is
adjusted for the effects of age and parity. The answer is
that the value of 8 depends on the coefficients for age
and parity; the computer program calculates these
interrelated coefficients. Standard logistic regression
programs will also calculate the 95% confidence inter-
val (see Part I) for the odds ratio.

To this point, we have illustrated only the use of
logistic regression to control for confounders. Logistic
regression can also handle the other major type of
covariate, the effect modifier. Effect modifiers are dealt
with by including product (interaction) terms in the
logistic model. In our example, if age had been an
effect modifier rather than a confounder (ie, if the
impact of OC use on the risk of ovarian cancer varied
by age), then an interaction term (eg, x = OC X age)
would have to be included in the logistic model. The
inclusion of interaction terms, which may even include
variables raised to a higher power, can substantially
complicate the building of a logistic model. Complex
models are Discussed in introductory texts on regres-
sion analysis.

How Mathematical Models Are Built

To build a proper model for regression analysis, inves-
tigators must decide which covariates to include and in
which sequence to enter or delete them. There are no
uniform rules for this process. Although ““cookbook”
approaches to modeling carry some risks, a general
strategy for model building has been proposed’ that
has proven useful. This strategy consists of the follow-
ing steps:

1) Specify variables. Identify the exposure and dis-
ease of interest and the independent variables to be
assessed as potential confounders. Identify interac-
tions to be evaluated.

2) Construct an initial model. Include the exposure,
the disease, potential confounders, and pertinent two-
factor interactions (such as, in the example, OC use
and age). ’

3) Assess interactions by statistical tests for product
terms. If significant interaction is identified, calculate a
different odds ratio for each category of the cavariate in
the product term. For example, if calculations show
that the product term involving OC use (the exposure)
and age (the covariate) is statistically significant, calcu-
late odds ratio estimates for specific age groups of OC
users. Thus, if there are four different age groups of
interest, four different odds ratio estimates are calcu-
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lated. In such a case, age, the effect modifier, need not
be subsequently assessed as a potential confounder.

4) Assess confounding for those covariates not
found to be effect modifiers. This is done by estimating
the exposure-disease relationship with and without
each potential confounder. If the estimates are mean-
ingfully different, confounding is present. There are no
rules for deciding what is “meaningful.” Statistical
testing is not used.

5) Draw conclusions about odds ratios of interest
based on the final model. This model will contain
appropriate confounders and interaction (product)
terms together with the exposure variable(s) of inter-
est.

Evaluating the Use of Mathematical Models

The critical reader may find it difficult to assess the
appropriateness of regression analysis for a particular
study. The methods section of a report often fails to
explain why a particular choice of regression model is
appropriate, whether confounders were identified a
priori or by their impact on the exposure-disease
relationship, or whether interaction was assessed. Di-
rect communication with the authors of a report may
be required to obtain this information. Such verifica-
tion is clearly not feasible or practical on a routine
basis.

So how should the practicing clinician evaluate a
report in which logistic regression is used? Even when
there is little information about the use of the model,
there may be sulfficient information to assess the qual-
ity of the data fed into the model (Part I of this report)
and to draw meaningful interpretations from the odds
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ratios thus obtained. The use of logistic regression
analysis suggests only that the data have been manip.
ulated in a sophisticated, but not necessarily correct,
manner. It must be emphasized that the use of math-
ematical modeling cannot “fix” data that result from a
poorly designed or improperly conducted study. Nev-
ertheless, when properly used, mathematical model-
ing can control for covariates and thereby improve the
likelihood of obtaining an accurate measure of the
exposure-disease relationship.
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